Syntaxin-1A binds to and modulates the Slo calcium-activated potassium channel via an interaction that excludes syntaxin binding to calcium channels.

نویسندگان

  • Susan M Cibulsky
  • Hong Fei
  • Irwin B Levitan
چکیده

From its position in presynaptic nerve terminals, the large conductance Ca(2+)-activated K+ channel, Slo, regulates neurotransmitter release. Several other ion channels known to control neurotransmitter release have been implicated in physical interactions with the neurotransmitter release machinery. For example, the Ca(v)2.2 (N-type) Ca2+ channel binds to and is modulated by syntaxin-1A and SNAP-25. Furthermore, a close juxtaposition of Slo and Ca(v)2.2 is presumed to be necessary for functional coupling between the two channels, which has been shown in neurons. We report that Slo exhibits a strong association with syntaxin-1A. Robust co-immunoprecipitation of Slo and syntaxin-1A occurs from transfected HEK293 cells as well as from brain. However, despite this strong interaction and the known association between syntaxin-1A and the II-III loop of Ca(v)2.2, these three proteins do not co-immunoprecipitate in a trimeric complex from transfected HEK293 cells. The Slo-syntaxin-1A co-immunoprecipitation is not significantly influenced by [Ca2+]. Multiple relatively weak interactions may sum up to a tight physical coupling of full-length Slo with syntaxin-1A: the C-terminal tail and the S0-S1 loop of Slo each co-immunoprecipitate with syntaxin-1A. The presence of syntaxin-1A leads to reduced Slo channel activity due to an increased V(1/2) for activation in 100 nM, 1 muM, and 10 microM Ca2+, reduced voltage-sensitivity in 1 microM Ca2+, and slower rates of activation in 10 microM Ca2+. Potential physiological consequences of the interaction between Slo and syntaxin-1A include enhanced excitability through modulation of Slo channel activity and reduced neurotransmitter release due to disruption of syntaxin-1A binding to the Ca(v)2.2 II-III loop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis.

T-type calcium channels represent a key pathway for Ca(2+) entry near the resting membrane potential. Increasing evidence supports a unique role of these channels in fast and low-threshold exocytosis in an action potential-independent manner, but the underlying molecular mechanisms have remained unknown. Here, we report the existence of a syntaxin-1A/Ca(v)3.2 T-type calcium channel signaling co...

متن کامل

Syntaxin 1 A regulates surface expression of β - cell ATP - sensitive 1 potassium channels

26 The pancreatic ATP-sensitive potassium (KATP) channel consisting of four Kir6.2 and 27 four sulfonylurea receptor SUR1 subunits play a key role in insulin secretion by 28 linking glucose metabolism to membrane excitability. Syntaxin 1A is a plasma 29 membrane protein important for membrane fusion during exocytosis of insulin 30 granules. Here, we show that syntaxin 1A and KATP channels endog...

متن کامل

How do T-type calcium channels control low-threshold exocytosis?

Low-voltage-activated T-type calcium channels act as a major pathway for calcium entry near the resting membrane potential in a wide range of neuronal cell types. Several reports have uncovered an unrecognized feature of T-type channels in the control of vesicular neurotransmitter and hormone release, a process so far thought to be mediated exclusively by high-voltage-activated calcium channels...

متن کامل

CFTR chloride channels are regulated by a SNAP-23/syntaxin 1A complex.

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion reactions in eukaryotic cells by assembling into complexes that link vesicle-associated SNAREs with SNAREs on target membranes (t-SNAREs). Many SNARE complexes contain two t-SNAREs that form a heterodimer, a putative intermediate in SNARE assembly. Individual t-SNAREs (e.g., syntaxin 1A) also...

متن کامل

Bidirectional modulation of transmitter release by calcium channel/syntaxin interactions in vivo.

Protein interactions within the active zone of the nerve terminal are critical for regulation of transmitter release. The SNARE protein syntaxin 1A, primarily known for important interactions that control vesicle fusion, also interacts with presynaptic voltage-gated calcium channels. Based on recordings of calcium channel function in vitro, it has been hypothesized that syntaxin 1A-calcium chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 3  شماره 

صفحات  -

تاریخ انتشار 2005